"""
Post-processing fairness intervension by choosing thresholds.
There are multiple definitions for choosing the thresholds:
1. Single threshold for all the sensitive attribute values
that minimizes cost.
2. A threshold for each sensitive attribute value
that minimize cost.
3. A threshold for each sensitive attribute value
that achieve independence and minimize cost.
4. A threshold for each sensitive attribute value
that achieve equal FNR (equal opportunity) and minimize cost.
5. A threshold for each sensitive attribute value
that achieve separation (equalized odds) and minimize cost.
The code is based on `fairmlbook repository <https://github.com/fairmlbook/fairmlbook.github.io>`_.
References:
- Hardt, M., Price, E., & Srebro, N. (2016).
`Equality of opportunity in supervised learning
<https://arxiv.org/abs/1610.02413>`_
In Advances in neural information processing systems
(pp. 3315-3323).
- `Attacking discrimination with
smarter machine learning by Google
<https://research.google.com/bigpicture/attacking-discrimination-in-ml/>`_.
"""
# pylint: disable=no-name-in-module,ungrouped-imports
from collections import Counter
import matplotlib.pylab as plt
import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib.ticker import AutoMinorLocator
from scipy.spatial import Delaunay
from responsibly.fairness.metrics.score import roc_curve_by_attr
from responsibly.fairness.metrics.utils import _groupby_y_x_sens
from responsibly.fairness.metrics.visualization import plot_roc_curves
TRINARY_SEARCH_TOL = 1e-3
def _strictly_increasing(arr):
return (np.diff(arr) >= 0).all()
def _titlify(text):
text = text.replace('_', ' ').title()
if text == 'Fnr':
text = 'FNR'
return text
def _ternary_search_float(f, left, right, tol):
"""Trinary search: minimize f(x) over [left, right], to within +/-tol in x.
Works assuming f is quasiconvex.
"""
while right - left > tol:
left_third = (2 * left + right) / 3
right_third = (left + 2 * right) / 3
if f(left_third) < f(right_third):
right = right_third
else:
left = left_third
return (right + left) / 2
def _ternary_search_domain(f, domain):
"""Trinary search: minimize f(x) over a domain (sequence).
Works assuming f is quasiconvex and domain is ascending sorted.
BUGGY, DO NOT USE
>>> arr = np.concatenate([np.arange(10, 2, -1), np.arange(2, 20)])
>>> t1 = _ternary_search_domain(lambda t: arr[t], range(len(arr)))
>>> t2 = np.argmin(arr)
>>> assert t1 == t2
>>> assert arr[t1] == arr[t2]
"""
left = 0
right = len(domain) - 1
changed = True
while changed and left != right:
changed = False
left_third = (2 * left + right) // 3
right_third = (left + 2 * right) // 3
if f(domain[left_third]) < f(domain[right_third]):
right = right_third - 1
changed = True
else:
left = left_third + 1
changed = True
return domain[(left + right) // 2]
def _cost_function(fpr, tpr, base_rate, cost_matrix):
"""Compute the cost of given (fpr, tpr).
[[tn, fp], [fn, tp]]
"""
fp = fpr * (1 - base_rate)
tn = (1 - base_rate) - fp
tp = tpr * base_rate
fn = base_rate - tp
conf_matrix = np.array([tn, fp, fn, tp])
return (conf_matrix * np.array(cost_matrix).ravel()).sum()
def _extract_threshold(roc_curves):
return next(iter(roc_curves.values()))[2]
def _first_index_above(arr, value):
"""Find the smallest index i for which array[i] > value.
If no such value exists, return len(array).
"""
assert _strictly_increasing(arr), (
'arr should be stricktly increasing.')
arr = np.array(arr)
v = np.concatenate([arr > value, [1]])
return np.argmax(v, axis=0)
def _calc_acceptance_rate(fpr, tpr, base_rate):
return (fpr * (1 - base_rate)
+ tpr * base_rate)
[docs]def find_single_threshold(roc_curves, base_rates, proportions,
cost_matrix):
"""Compute single threshold that minimizes cost.
:param roc_curves: Receiver operating characteristic (ROC)
by attribute.
:type roc_curves: dict
:param base_rates: Base rate by attribute.
:type base_rates: dict
:param proportions: Proportion of each attribute value.
:type proportions: dict
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]].
:type cost_matrix: sequence
:return: Threshold, FPR and TPR by attribute and cost value.
:rtype: tuple
"""
def total_cost_function(index):
total_cost = 0
for group, roc in roc_curves.items():
fpr = roc[0][index]
tpr = roc[1][index]
group_cost = _cost_function(fpr, tpr,
base_rates[group], cost_matrix)
group_cost *= proportions[group]
total_cost += group_cost
return -total_cost
thresholds = _extract_threshold(roc_curves)
cost_per_threshold = [total_cost_function(index)
for index in range(len(thresholds))]
cutoff_index = np.argmin(cost_per_threshold)
fpr_tpr = {group: (roc[0][cutoff_index], roc[1][cutoff_index])
for group, roc in roc_curves.items()}
cost = total_cost_function(cutoff_index)
return thresholds[cutoff_index], fpr_tpr, cost
[docs]def find_min_cost_thresholds(roc_curves, base_rates, proportions, cost_matrix):
"""Compute thresholds by attribute values that minimize cost.
:param roc_curves: Receiver operating characteristic (ROC)
by attribute.
:type roc_curves: dict
:param base_rates: Base rate by attribute.
:type base_rates: dict
:param proportions: Proportion of each attribute value.
:type proportions: dict
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]].
:type cost_matrix: sequence
:return: Thresholds, FPR and TPR by attribute and cost value.
:rtype: tuple
"""
# pylint: disable=cell-var-from-loop
cutoffs = {}
fpr_tpr = {}
cost = 0
thresholds = _extract_threshold(roc_curves)
for group, roc in roc_curves.items():
def group_cost_function(index):
fpr = roc[0][index]
tpr = roc[1][index]
return -_cost_function(fpr, tpr,
base_rates[group], cost_matrix)
cost_per_threshold = [group_cost_function(index)
for index in range(len(thresholds))]
cutoff_index = np.argmin(cost_per_threshold)
cutoffs[group] = thresholds[cutoff_index]
fpr_tpr[group] = (roc[0][cutoff_index],
roc[1][cutoff_index])
cost += group_cost_function(cutoff_index) * proportions[group]
return cutoffs, fpr_tpr, cost
def get_acceptance_rate_indices(roc_curves, base_rates,
acceptance_rate_value):
indices = {}
for group, roc in roc_curves.items():
# can be calculated outside the function
acceptance_rates = _calc_acceptance_rate(fpr=roc[0],
tpr=roc[1],
base_rate=base_rates[group])
index = _first_index_above(acceptance_rates,
acceptance_rate_value)
indices[group] = index
return indices
[docs]def find_independence_thresholds(roc_curves, base_rates, proportions,
cost_matrix):
"""Compute thresholds that achieve independence and minimize cost.
:param roc_curves: Receiver operating characteristic (ROC)
by attribute.
:type roc_curves: dict
:param base_rates: Base rate by attribute.
:type base_rates: dict
:param proportions: Proportion of each attribute value.
:type proportions: dict
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]].
:type cost_matrix: sequence
:return: Thresholds, FPR and TPR by attribute and cost value.
:rtype: tuple
"""
cutoffs = {}
def total_cost_function(acceptance_rate_value):
# todo: move demo here + multiple cost
# + refactor - use threshold to calculate
# acceptance_rate_value
indices = get_acceptance_rate_indices(roc_curves, base_rates,
acceptance_rate_value)
total_cost = 0
for group, roc in roc_curves.items():
index = indices[group]
fpr = roc[0][index]
tpr = roc[1][index]
group_cost = _cost_function(fpr, tpr,
base_rates[group],
cost_matrix)
group_cost *= proportions[group]
total_cost += group_cost
return -total_cost
acceptance_rate_min_cost = _ternary_search_float(total_cost_function,
0, 1, TRINARY_SEARCH_TOL)
cost = total_cost_function(acceptance_rate_min_cost)
threshold_indices = get_acceptance_rate_indices(roc_curves, base_rates,
acceptance_rate_min_cost)
thresholds = _extract_threshold(roc_curves)
cutoffs = {group: thresholds[threshold_index]
for group, threshold_index
in threshold_indices.items()}
fpr_tpr = {group: (roc[0][threshold_indices[group]],
roc[1][threshold_indices[group]])
for group, roc in roc_curves.items()}
return cutoffs, fpr_tpr, cost, acceptance_rate_min_cost
def get_fnr_indices(roc_curves, fnr_value):
indices = {}
tpr_value = 1 - fnr_value
for group, roc in roc_curves.items():
tprs = roc[1]
index = _first_index_above(tprs,
tpr_value) - 1
index = max(0, index)
indices[group] = index
return indices
[docs]def find_fnr_thresholds(roc_curves, base_rates, proportions,
cost_matrix):
"""Compute thresholds that achieve equal FNRs and minimize cost.
Also known as **equal opportunity**.
:param roc_curves: Receiver operating characteristic (ROC)
by attribute.
:type roc_curves: dict
:param base_rates: Base rate by attribute.
:type base_rates: dict
:param proportions: Proportion of each attribute value.
:type proportions: dict
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]].
:type cost_matrix: sequence
:return: Thresholds, FPR and TPR by attribute and cost value.
:rtype: tuple
"""
cutoffs = {}
def total_cost_function(fnr_value):
# todo: move demo here + multiple cost
indices = get_fnr_indices(roc_curves, fnr_value)
total_cost = 0
for group, roc in roc_curves.items():
index = indices[group]
fpr = roc[0][index]
tpr = roc[1][index]
group_cost = _cost_function(fpr, tpr,
base_rates[group],
cost_matrix)
group_cost *= proportions[group]
total_cost += group_cost
return -total_cost
fnr_value_min_cost = _ternary_search_float(total_cost_function,
0, 1,
TRINARY_SEARCH_TOL)
threshold_indices = get_fnr_indices(roc_curves, fnr_value_min_cost)
cost = total_cost_function(fnr_value_min_cost)
fpr_tpr = {group: (roc[0][threshold_indices[group]],
roc[1][threshold_indices[group]])
for group, roc in roc_curves.items()}
thresholds = _extract_threshold(roc_curves)
cutoffs = {group: thresholds[threshold_index]
for group, threshold_index
in threshold_indices.items()}
return cutoffs, fpr_tpr, cost, fnr_value_min_cost
def _find_feasible_roc(roc_curves):
polygons = [Delaunay(list(zip(fprs, tprs)))
for group, (fprs, tprs, _) in roc_curves.items()]
feasible_points = []
for poly in polygons:
for p in poly.points:
if all(poly2.find_simplex(p) != -1 for poly2 in polygons):
feasible_points.append(p)
return np.array(feasible_points)
[docs]def find_separation_thresholds(roc_curves, base_rate, cost_matrix):
"""Compute thresholds that achieve separation and minimize cost.
Also known as **equalized odds**.
:param roc_curves: Receiver operating characteristic (ROC)
by attribute.
:type roc_curves: dict
:param base_rate: Overall base rate.
:type base_rate: float
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]].
:type cost_matrix: sequence
:return: Thresholds, FPR and TPR by attribute and cost value.
:rtype: tuple
"""
feasible_points = _find_feasible_roc(roc_curves)
cost, (best_fpr, best_tpr) = max((_cost_function(fpr, tpr, base_rate,
cost_matrix),
(fpr, tpr))
for fpr, tpr in feasible_points)
cost = - cost
return {}, {'': (best_fpr, best_tpr)}, cost
[docs]def find_thresholds(roc_curves, proportions, base_rate,
base_rates, cost_matrix,
with_single=True, with_min_cost=True,
with_independence=True, with_fnr=True,
with_separation=True):
"""Compute thresholds that achieve various criteria and minimize cost.
:param roc_curves: Receiver operating characteristic (ROC)
by attribute.
:type roc_curves: dict
:param proportions: Proportion of each attribute value.
:type proportions: dict
:param base_rate: Overall base rate.
:type base_rate: float
:param base_rates: Base rate by attribute.
:type base_rates: dict
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]].
:type cost_matrix: sequence
:param with_single: Compute single threshold.
:type with_single: bool
:param with_min_cost: Compute minimum cost thresholds.
:type with_min_cost: bool
:param with_independence: Compute independence thresholds.
:type with_independence: bool
:param with_fnr: Compute FNR thresholds.
:type with_fnr: bool
:param with_separation: Compute separation thresholds.
:type with_separation: bool
:return: Dictionary of threshold criteria,
and for each criterion:
thresholds, FPR and TPR by attribute and cost value.
:rtype: dict
"""
thresholds = {}
if with_single:
thresholds['single'] = find_single_threshold(roc_curves,
base_rates,
proportions,
cost_matrix)
if with_min_cost:
thresholds['min_cost'] = find_min_cost_thresholds(roc_curves,
base_rates,
proportions,
cost_matrix)
if with_independence:
thresholds['independence'] = find_independence_thresholds(roc_curves,
base_rates,
proportions,
cost_matrix)
if with_fnr:
thresholds['fnr'] = find_fnr_thresholds(roc_curves,
base_rates,
proportions,
cost_matrix)
if with_separation:
thresholds['separation'] = find_separation_thresholds(roc_curves,
base_rate,
cost_matrix)
return thresholds
[docs]def find_thresholds_by_attr(y_true, y_score, x_sens,
cost_matrix,
with_single=True, with_min_cost=True,
with_independence=True, with_fnr=True,
with_separation=True,
pos_label=None, sample_weight=None,
drop_intermediate=False):
"""
Compute thresholds that achieve various criteria and minimize cost.
:param y_true: Binary ground truth (correct) target values.
:param y_score: Estimated target score as returned by a classifier.
:param x_sens: Sensitive attribute values corresponded to each
estimated target.
:param cost_matrix: Cost matrix by [[tn, fp], [fn, tp]].
:type cost_matrix: sequence
:param pos_label: Label considered as positive and others
are considered negative.
:param sample_weight: Sample weights.
:param drop_intermediate: Whether to drop some suboptimal
thresholds which would not appear on
a plotted ROC curve.
This is useful in order to create
lighter ROC curves.
:param with_single: Compute single threshold.
:type with_single: bool
:param with_min_cost: Compute minimum cost thresholds.
:type with_min_cost: bool
:param with_independence: Compute independence thresholds.
:type with_independence: bool
:param with_fnr: Compute FNR thresholds.
:type with_fnr: bool
:param with_separation: Compute separation thresholds.
:type with_separation: bool
:return: Dictionary of threshold criteria,
and for each criterion:
thresholds, FPR and TPR by attribute and cost value.
:rtype: dict
"""
# pylint: disable=too-many-locals
roc_curves = roc_curve_by_attr(y_true, y_score, x_sens,
pos_label, sample_weight,
drop_intermediate)
proportions = {value: count / len(x_sens)
for value, count in Counter(x_sens).items()}
if pos_label is None:
pos_label = 1
base_rate = np.mean(y_true == pos_label)
grouped = _groupby_y_x_sens(y_true, y_score, x_sens)
base_rates = {x_sens_value: np.mean(group['y_true'] == pos_label)
for x_sens_value, group in grouped}
thresholds_data = find_thresholds(roc_curves,
proportions,
base_rate,
base_rates,
cost_matrix,
with_single, with_min_cost,
with_independence, with_fnr,
with_separation)
return thresholds_data
[docs]def plot_roc_curves_thresholds(roc_curves, thresholds_data,
aucs=None,
title='ROC Curves by Attribute',
ax=None, figsize=None,
title_fontsize='large',
text_fontsize='medium'):
"""Generate the ROC curves by attribute with thresholds.
Based on :func:`skplt.metrics.plot_roc`
:param roc_curves: Receiver operating characteristic (ROC)
by attribute.
:type roc_curves: dict
:param thresholds_data: Thresholds by attribute from the
function
:func:`~responsibly.interventions
.threshold.find_thresholds`.
:type thresholds_data: dict
:param aucs: Area Under the ROC (AUC) by attribute.
:type aucs: dict
:param str title: Title of the generated plot.
:param ax: The axes upon which to plot the curve.
If `None`, the plot is drawn on a new set of axes.
:param tuple figsize: Tuple denoting figure size of the plot
e.g. (6, 6).
:param title_fontsize: Matplotlib-style fontsizes.
Use e.g. 'small', 'medium', 'large'
or integer-values.
:param text_fontsize: Matplotlib-style fontsizes.
Use e.g. 'small', 'medium', 'large'
or integer-values.
:return: The axes on which the plot was drawn.
:rtype: :class:`matplotlib.axes.Axes`
"""
ax = plot_roc_curves(roc_curves, aucs,
title, ax, figsize, title_fontsize, text_fontsize)
MARKERS = ['o', '^', 'x', '+', 'p']
for (name, data), marker in zip(thresholds_data.items(), MARKERS):
label = _titlify(name)
ax.scatter(*zip(*data[1].values()),
marker=marker, color='k', label=label,
zorder=float('inf'))
plt.legend()
return ax
[docs]def plot_fpt_tpr(roc_curves,
title='FPR-TPR Curves by Attribute',
ax=None, figsize=None,
title_fontsize='large', text_fontsize='medium'):
"""Generate FPR and TPR curves by thresholds and by attribute.
Based on :func:`skplt.metrics.plot_roc`
:param roc_curves: Receiver operating characteristic (ROC)
by attribute.
:type roc_curves: dict
:param str title: Title of the generated plot.
:param ax: The axes upon which to plot the curve.
If `None`, the plot is drawn on a new set of axes.
:param tuple figsize: Tuple denoting figure size of the plot
e.g. (6, 6).
:param title_fontsize: Matplotlib-style fontsizes.
Use e.g. 'small', 'medium', 'large'
or integer-values.
:param text_fontsize: Matplotlib-style fontsizes.
Use e.g. 'small', 'medium', 'large'
or integer-values.
:return: The axes on which the plot was drawn.
:rtype: :class:`matplotlib.axes.Axes`
"""
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable
ax.set_title(title, fontsize=title_fontsize)
thresholds = _extract_threshold(roc_curves)
prop_cycle = plt.rcParams['axes.prop_cycle']
colors = prop_cycle.by_key()['color']
for (group, roc), color in zip(roc_curves.items(), colors):
plt.plot(thresholds, roc[0], '-',
label='{} - FPR'.format(group), color=color)
plt.plot(thresholds, roc[1], '--',
label='{} - TPR'.format(group), color=color)
plt.legend()
ax.set_ylim([0.0, 1.05])
ax.set_xlabel('Threshold', fontsize=text_fontsize)
ax.set_ylabel('Probability', fontsize=text_fontsize)
ax.tick_params(labelsize=text_fontsize)
ax.legend(fontsize=text_fontsize)
return ax
[docs]def plot_costs(thresholds_data,
title='Cost by Threshold Strategy',
ax=None, figsize=None,
title_fontsize='large', text_fontsize='medium'):
"""Plot cost by threshold definition and by attribute.
Based on :func:`skplt.metrics.plot_roc`
:param thresholds_data: Thresholds by attribute from the
function
:func:`~responsibly.interventions
.threshold.find_thresholds`.
:type thresholds_data: dict
:param str title: Title of the generated plot.
:param ax: The axes upon which to plot the curve.
If `None`, the plot is drawn on a new set of axes.
:param tuple figsize: Tuple denoting figure size of the plot
e.g. (6, 6).
:param title_fontsize: Matplotlib-style fontsizes.
Use e.g. 'small', 'medium', 'large'
or integer-values.
:param text_fontsize: Matplotlib-style fontsizes.
Use e.g. 'small', 'medium', 'large'
or integer-values.
:return: The axes on which the plot was drawn.
:rtype: :class:`matplotlib.axes.Axes`
"""
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable
ax.set_title(title, fontsize=title_fontsize)
costs = {_titlify(group): cost
for group, (_, _, cost, *_) in thresholds_data.items()}
(pd.Series(costs)
.sort_values(ascending=False)
.plot(kind='barh', ax=ax))
ax.set_xlabel('Cost', fontsize=text_fontsize)
ax.set_ylabel('Threshold', fontsize=text_fontsize)
ax.tick_params(labelsize=text_fontsize)
return ax
[docs]def plot_thresholds(thresholds_data,
markersize=7,
title='Thresholds by Strategy and Attribute',
xlim=None,
ax=None, figsize=None,
title_fontsize='large', text_fontsize='medium'):
"""Plot thresholds by strategy and by attribute.
Based on :func:`skplt.metrics.plot_roc`
:param thresholds_data: Thresholds by attribute from the
function
:func:`~responsibly.interventions
.threshold.find_thresholds`.
:type thresholds_data: dict
:param int markersize: Marker size.
:param str title: Title of the generated plot.
:param tuple xlim: Set the data limits for the x-axis.
:param ax: The axes upon which to plot the curve.
If `None`, the plot is drawn on a new set of axes.
:param tuple figsize: Tuple denoting figure size of the plot
e.g. (6, 6).
:param title_fontsize: Matplotlib-style fontsizes.
Use e.g. 'small', 'medium', 'large'
or integer-values.
:param text_fontsize: Matplotlib-style fontsizes.
Use e.g. 'small', 'medium', 'large'
or integer-values.
:return: The axes on which the plot was drawn.
:rtype: :class:`matplotlib.axes.Axes`
"""
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize) # pylint: disable=unused-variable
ax.set_title(title, fontsize=title_fontsize)
# TODO: refactor!
df = pd.DataFrame({_titlify(key): thresholds
for key, (thresholds, *_) in thresholds_data.items()
if key != 'separation'})
melted_df = pd.melt(df, var_name='Strategy', value_name='Threshold')
melted_df['Attribute'] = list(df.index) * len(df.columns)
sns.stripplot(y='Strategy', x='Threshold', hue='Attribute', data=melted_df,
jitter=False, dodge=True, size=markersize, ax=ax)
minor_locator = AutoMinorLocator(2)
fig.gca().yaxis.set_minor_locator(minor_locator)
ax.grid(which='minor')
if xlim is not None:
ax.set_xlim(*xlim)
ax.set_xlabel('Threshold', fontsize=text_fontsize)
ax.set_ylabel('Strategy', fontsize=text_fontsize)
ax.tick_params(labelsize=text_fontsize)
return ax