Source code for responsibly.dataset.adult
__all__ = ['AdultDataset']
import numpy as np
import pandas as pd
from pkg_resources import resource_filename
from responsibly.dataset.core import Dataset
ADULT_TRAIN_PATH = resource_filename(__name__,
'adult.data')
ADULT_TEST_PATH = resource_filename(__name__,
'adult.test')
COLUMN_NAMES = ['age', 'workclass', 'fnlwgt', 'education',
'education-num', 'marital_status', 'occupation',
'relationship', 'race', 'sex', 'capital_gain',
'capital_loss', 'hours_per_week', 'native_country',
'income_per_year']
[docs]class AdultDataset(Dataset):
"""Adult Dataset.
See :class:`~responsibly.dataset.Dataset` for a description of
the arguments and attributes.
References:
https://archive.ics.uci.edu/ml/datasets/adult
"""
def __init__(self):
super().__init__(target='income_per_year',
sensitive_attributes=['sex', 'race'])
def _load_data(self):
train_df = pd.read_csv(ADULT_TRAIN_PATH, names=COLUMN_NAMES,
skipinitialspace=True,
header=None, index_col=False,
na_values='?')
test_df = pd.read_csv(ADULT_TEST_PATH, names=COLUMN_NAMES,
skipinitialspace=True,
header=0, index_col=False,
na_values='?')
train_df['dataset'] = 'train'
test_df['dataset'] = 'test'
return pd.concat([train_df, test_df], ignore_index=True)
def _preprocess(self):
"""Perform the same preprocessing as the dataset doc file."""
self.df = self.df.dropna()
self.df = self.df.drop(['fnlwgt'], axis=1)
self.df['income_per_year'] = (self.df['income_per_year']
.str
.replace('.', ''))
def _validate(self):
# pylint: disable=line-too-long
super()._validate()
assert len(self.df) == 45222, 'the number of rows should be 45222,'\
' but it is {}.'.format(len(self.df))
assert len(self.df.columns) == 15, 'the number of columns should be 15,'\
' but it is {}.'.format(len(self.df.columns))
train_df = self.df[self.df['dataset'] == 'train']
test_df = self.df[self.df['dataset'] == 'test']
assert len(train_df) == 30162, 'the number of train rows should be 30162,'\
' but it is {}.'.format(len(train_df))
assert len(test_df) == 15060, 'the number of train rows should be 15060,'\
' but it is {}.'.format(len(test_df))